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1 Introduction

Many combinatorial problems in probability and statistics can be formulated and
indeed better understood by using appropriate urn models, which are also known
as random allocation schemes. Such models naturally arise in statistical mechanics,
clinical trials, cryptography, etc. Properties of several types of urn models have been
extensively studied in both probability and statistics literature; see e.g. the books by
Johnson and Kotz [15], Kolchin et al. [18], and survey papers by Ivanov et al. [12],
Kotz and Balakrishnan [19].

One of the more common urn models is the sampling scheme with replacement
from a finite population which contains N objects, labeled 1 through N ; the prob-
ability that the mth object will be selected in each of the sampling steps is equal
to pm > 0, p1 + · · · + pN = 1. If ηm stands for the frequency of the mth object
after n independent selections (i.e. in a sample of size n), then the random vec-
tor (henceforth r.v.) (η1, . . . , ηN) has a multinomial distribution with parameters
(n,p1, . . . , pN). As is well known, one important and useful property of such a multi-
nomial r.v. is that its distribution can be represented as the joint conditional distribu-
tion of independent random variables (ξ1, . . . , ξN) given their sum ξ1 +· · ·+ ξN = n,
where ξm is Poisson (υpm) for an arbitrary positive real υ . Such a conditional rep-
resentation is indeed a characteristic property of many urn models, and thus the fol-
lowing definition includes several commonly known urn models as special cases.

Let ξ = (ξ1, . . . , ξN ) be an r.v. with independent and non-negative integer com-
ponents such that P {ξ1 + · · · + ξN = n} > 0, for a given integer n > 1. Also let
η = (η1, . . . , ηN) be an r.v. whose distribution is defined by

L(η1, . . . , ηN) = L(ξ1, . . . , ξN |ξ1 + · · · + ξN = n), (1.1)

where L(X) here, and in what follows, stands for the distribution of an r.v. X. Note
that (1.1) implies that P {η1 + · · · + ηN = n} = 1. The model defined in (1.1) is what
we will call a “generalized urn model” (GUM): when a sample of size n is drawn
from an urn containing N types of objects and ηm represents the number of mth type
of object appearing in the sample, the distribution of the r.v. ξ defines the sample
scheme through (1.1). We are interested in the following general class of statistics:

RN(η) =
N∑

m=1

fm,N(ηm), (1.2)

where f1,N (x), . . . , fN,N(x) are Borel functions defined for non-negative x. The
functions fm,N can also be allowed to be random, in which case we will assume that
the r.v. (f1,N (xN), . . . , fN,N(xN)) for any collection of real non-negative x1, . . . , xN
does not depend on the r.v. ξ . A statistic of the type (1.2) is called a “decomposable
statistic” (DS) in the literature. For the case when the kernel functions fm,N are also
random, the statistic (1.2) is called a “randomized DS” (see for instance [12, 20, 22]).
Although the terminology DS is usually reserved for the special case when fm,N are
not random, we will use it here for either of these cases. The following three special
cases of the GUMs and related DSs are most common in applications.
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A. Sample Scheme with Replacement Let L(ξm) = Poi(υpm) be a Poisson distribu-
tion with expectation υpm, where υ ∈ (0,∞) is arbitrary, pm > 0, m = 1, . . . ,N and
p1 + · · ·+pN = 1; then the r.v. η has the multinomial distribution M(n,p1, . . . , pN)

and we have a sample scheme with replacement. This scheme is associated with the
random allocation of n particles to N cells: the cells are labeled 1 through N , par-
ticles are allocated to cells independently of each other and the probability of a par-
ticle falling into mth cell is pm, m = 1, . . . ,N . The classical chi-square, likelihood-
ratio statistic, and the empty-cells statistic are examples of the type (1.2) mentioned
above.

B. Sample Scheme Without Replacement Suppose L(ξm) = Bi(ωm,υ) is a binomial
distribution with parameters ωm > 0 and arbitrary υ ∈ (0,1), m = 1, . . . ,N , then the
r.v. η has the multi-dimensional hypergeometric distribution:

P {η1 = k1, . . . , ηN = kN } =
(
ΩN

n

)−1 N∏

m=1

(
ωm

km

)
,

where ΩN = ω1 +· · ·+ωN , k1 +· · ·+kN = n and 0 ≤ km ≤ ωm, m = 1, . . . ,N . This
GUM corresponds to a sampling scheme without replacement from a stratified finite
population of size ΩN . For instance, the sample sum and the standard sample-based
Estimate of the Population Total, are examples of DSs of the form (1.2).

C. Multicolor Pólya–Egenberger Urn Model Let L(ξm) = NB(dm,υ) be negative
binomial distribution with dm > 0 and arbitrary υ ∈ (0,1), m = 1, . . . ,N . Then

P {η1 = k1, . . . , ηN = kN } =
(
DN + n− 1

n

)−1 N∏

m=1

(
dm + km − 1

km

)
, (1.3)

where DN = d1 + · · · + dN , is the generalized Pólya–Egenberger distribution; such a
specification of the GUM corresponds to the multicolor Pólya–Egenberger urn model
(see e.g. [19, Chap. 40]). For example, the number of colors that appear in the sam-
ple exactly r times and the number of pairs having the same color, are statistics of
the type (1.2). We note that sum of functions of “spacing-frequencies” under the hy-
pothesis of homogeneity of two samples can be formulated as a DS in this GUM;
see, for instance, [10, 35], for further details and important applications to testing
hypotheses.

There is extensive literature on DSs, much of it related to sampling with and
without replacement from a finite population. We specifically mention a few: Mi-
rakhmedov [26] obtains a bound for the remainder term in CLT and Cramer’s type
large deviation result for a special class of GUM; Mirakhmedov [24] and Ivchenko
and Mirakhmedov [14] consider a 2-term expansion with applications to some spe-
cial cases of DS in a multinomial scheme under somewhat restrictive conditions;
Babu and Bai [1] obtain Edgeworth expansion for mixtures of global and local
distributions—results that can be used when the DS is a linear function of fre-
quencies and a GUM is defined by identically distributed r.v.s ξm. Such results are
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clearly very restrictive on the parameters of the urn model and on the kernel func-
tions fm,N .

The aim of this paper is threefold: First, we present a general approach that allows
one to obtain an Edgeworth asymptotic expansion to any number of terms, for the
distribution of a DS in a GUM. Second, this general approach is used to extend known
results for classes of DS in the three special cases of GUM just mentioned. Third, we
illustrate these results by obtaining general Edgeworth expansions for three special
and interesting cases of DS, viz.:

(i) the chi-square statistic in Case A,
(ii) sample-sum in a sample scheme without replacement, i.e. in Case B, and

(iii) the Dixon spacing-frequencies statistic in Case C.

The chi-square statistic is considered for the case when the number of groups in-
creases along with the sample size, a situation that has been considered by some
authors, including [8, 29, 33, 34] and [23]. We obtain here a 3-term asymptotic ex-
pansion under very general conditions on the parameters, generalizing the results in
[23] and [14]. The result in (ii) improves the main results of [5, 21, 36, 37], as well as
parts of Theorem 1 of [11]. Asymptotic expansions for a DS in the multicolor Pólya–
Egenberger urn model and for the Dixon statistic as a special case are obtained here
for the first time.

It should be remarked that although we confine our discussion in this paper to the
above three examples of GUM and related DS for illustrative purposes as well as to
keep the length of the paper reasonable, it should be mentioned that the results derived
in this paper are generally applicable to any DS in other specifications of GUM,
for instance to the context of specified random forests, random cyclic substitutions
(cf. [17, 31]).

The paper is organized as follows. In Sect. 2 we present a systematic proce-
dure for obtaining an asymptotic expansion for the characteristic function of a DS,
to terms of any order. Our general approach is based on the so-called Bartlett’s
type integral formula and provides a simpler and more streamlined way of obtain-
ing higher-order approximations than what previous authors have used. The main
results are presented in Sect. 3. For the sake of completeness and to connect to
Bartlett’s type formula, we also present two theorems on asymptotic normality and
Berry–Esseen type bounds, showing how the current formulation helps simplify-
ing similar results obtained in [25, 26]. Applications to the special DSs (i), (ii),
and (iii) are given in Sect. 4, while the proofs of the main results are postponed to
an Appendix.

It should be mentioned that we are dealing with triangular arrays where all the pa-
rameters of a GUM vary (including the distribution of the r.v.s ξm) when both n and
N tend to infinity, formally through a non-decreasing sequence of positive integers
{nv}, {Nv}, as v → ∞; hence it is important to express the remainder terms in our
asymptotic expansions which show their explicit dependence on the n,N , distribu-
tions of the r.v.s ξm and the kernel functions fm,N .

In what follows, c and C with or without index are universal positive constants
which may depend on the argument and may be different at different places; all
asymptotic relations and limits are considered as n → ∞, and N = N(n) → ∞.
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2 Bartlett’s Type Formula and Asymptotic Expansion of the Characteristic
Function of a DS

We now define the following quantities:

AN =
N∑

m=1

Eξm, B2
N =

N∑

m=1

Var ξm, xN = (n−AN)/BN,

ΛN =
N∑

m=1

Efm(ξm), γN = 1

B2
N

N∑

m=1

cov
(
fm(ξm), ξm

)
,

gm(y) = fm(y)−Efm(ξm)− γN(y −Eξm), R̂N(η) =
N∑

m=1

gm(ηm),

σ 2
N =

N∑

m=1

Var gm(ξm) =
N∑

m=1

Varfm(ξm)−B2
Nγ 2

N.

(2.1)

Under some mild conditions (see for instance [13]), one can show that as n → ∞ and
N = N(n) → ∞,

ERN(η) = ΛN + xNBNγN − 1 − x2
N

2B2
N

N∑

m=1

Egm(ξm)(ξm −Eξm)
2(1 + o(1)

)
,

VarRN(η) = σ 2
N

(
1 + o(1)

)
.

(These expressions can also be derived by putting formally t = 0, j = 1 and j = 2

in Proposition 2.1 below; see Remark 2.1.) Also, R̂N (η) = RN(η)−ΛN − xNBNγN
and

N∑

m=1

Egm(ξm) = 0,
N∑

m=1

cov
(
gm(ξm), ξm

) = 0. (2.2)

Let φ be a measurable function such that E|φ(ξ1, ξ2, . . . , ξN )| < ∞ and ζN = ξ1 +
· · · + ξN . We have E(φ(ξ1, . . . , ξN )|ζN = n) = Eφ(η1, . . . , ηN), because of (1.1).
This, together with

E
(
φ(ξ1, . . . , ξN)eiτ(ζN−n)

) =
∞∑

k=0

eiτ(k−n)P {ζN = k}E(
φ(ξ1, . . . , ξN)|ζN = k

)
,

implies, by Fourier inversion,

Eφ(η1, η2, . . . , ηN) = 1

2πP {ζN = n}
∫ π

−π

Eφ(ξ1, ξ2, . . . , ξN ) exp
{
iτ (ζN − n)

}
dτ.

(2.3)
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Set

ΘN(t, xN) = 1√
2π

∫ πBN

−πBN

e−iτxN ΨN(t, τ ) dτ, (2.4)

where

ΨN(t, τ ) =
N∏

m=1

E exp
{
itσ−1

N gm(ξm)+ iτB−1
N (ξm −Eξm)

}
.

Then (2.3) together with the inversion formula for the local probability P {ζN = n}
gives us the following Bartlett’s type formula (cf. Bartlett [3]):

ϕN(t, xN) =: Eeitσ
−1
N R̂N (η) = ΘN(t, xN)

ΘN(0, xN)
(2.5)

which provides the crucial formula of interest. Special formulations of this formula
show up in literature; see e.g. [9, 22–24, 33]. Also, a very special case of (2.5) is the
most commonly used formula of [6] for investigating the sample sum in a without-
replacement scheme (see e.g. [2, 11, 38]). Formula (2.3) is also useful in studying
large deviation problems (see e.g. [26]).

A formal construction of the asymptotic expansion for ϕN(t, xN) defined in (2.5),
proceeds as follows: The integrand ΨN(t, τ )is the characteristic function (ch.f.) of
the sum of N independent two-dimensional r.v.s (gm, ξm). Because of (2.2), this sum
has zero expectation, a unit covariance matrix and uncorrelated components. From
[4, Chap. 2], it is well known that under suitable conditions, this ch.f. ΨN(t, τ ) can
be approximated by a power-series in N−1/2 whose coefficients are polynomials in t

and τ containing the common factor exp{−(t2 +τ 2)/2}. Hence the series can be inte-
grated wrt τ over the interval (−∞,∞). As a result of this integration, we get a power
series, say HN(t, xN), in N−1/2. Next, we replace ΘN(0, xN) by its series approxi-
mation, which is HN(0, xN). Finally, we get the asymptotic expansion of ϕN(t, xN)

by dividing HN(t, xN) by HN(0, xN).
The above algorithm, although manageable, needs long and complex calculations

as we show below. Assume that E|gm(ξm)|s < ∞ and E|ξm|s < ∞ for some s ≥ 3.
Let Pm,N(t, τ ), m = 1,2, . . . , be the well-known polynomials in t and τ from the the-
ory of the asymptotic expansion of the ch.f. of the sum of independent random vectors
(see (7.3), (7.6) of [4], p. 52), in our case for the quantity (g1, ξ2) + · · · + (gN , ξN);
the degree of Pm,N(t, τ ) is 3m and the minimal degree is m + 2; the coefficients
of Pm,N(t, τ ) only involve the cumulants of the r.v.s (g1, ξ2), . . . , (gN , ξN) of order
m+ 2 and less. Define polynomials (in t) of Gk,N(t, xN) as

Gk,N(t, xN) = ex
2
N/2

√
2π

∫ ∞

−∞
Pk,N (t, τ ) exp

{
−iτxN − τ 2

2

}
dτ, k = 0,1,2, . . . .

(2.6)
Now define Qj,N(xN) from the equation

∞∑

k=0

(−1)k
(

s−3∑

v=0

N−v/2Gv,N(0, xN)

)k

=
∞∑

j=0

N−j/2Qj,N(xN).
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Then

Qj,N(xN) = j !
∑ s−3∏

i=1

1

ji !G
ji
i,N (0, xN), (2.7)

where the summation is over all (s − 3)-tuples (j1, j2, . . . , js−3) with non-negative
integers ji such that j1 + 2j2 + · · · + (s − 3)js−3 = j . Let

W
(s)
N (t, xN) =

s−3∑

m=0

N−m/2
m∑

v=0

Gv,N(t, xN)Qm−v,N (xN). (2.8)

Note that G0,N (t, xN) = 1, Q0,N (xN) = 1 so that W(3)
N (t, xN) = 1. For example

W
(5)
N (t, xN) = 1 + 1√

N

(
G1,N (t, xN)−G1,N (0, xN)

)

+ 1

N

(
G2,N (t, xN)−G2,N (0, xN)

−G1,N (0, xN)
(
G1,N (t, xN)−G1,N (0, xN)

))
. (2.9)

In what follows, we will need the following additional notation:

σ̂ 2
N = N−1σ 2

N, B̂2
N = N−1B2

N, ĝm = gm(ξm)/σ̂N ,

ξ̂m = (ξm −Eξm)/B̂N ,

βj,N = N−j/2
N∑

m=1

E|ĝm|j , κj,N = N−j/2
N∑

m=1

E|ξ̂m|j ,

MN(T ) = inf
T≤|τ |≤π

N∑

m=1

(
1 − ∣∣E exp{iτ ξm}∣∣2) if T ≤ π, else MN(T ) = ∞,

Υs,N = βs,N + κs,N +B2
N exp

{
−1

8
MN

(
0.3(BNκ3,N )−1)

}
,

TN = min
(
β−1

3,N , E −1
N (1)

)
,

EN(δ) = 1

(MN(0.3(BNκ
1/δ
2+δ,N )−1))1/2

+ min(BN,
√
N)

MN(0.3(BNκ
1/δ
2+δ,N )−1)

, 0 < δ ≤ 1.

(2.10)

Throughout the paper we assume that |xN | ≤ c, although the method used here allows
us to let xN to increase at a rate of O(

√
logN) (see e.g. [25]). In the above-listed

three examples of GUM the parameter υ can be chosen such that xN = 0 (see also
the beginning of Sect. 4). We now have the following result which is proved in the
Appendix:
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Proposition 2.1 Let E|gm(ξm)|s < ∞, for some s ≥ 3, m = 1, . . . ,N and
Υs,N ≤ 0.01. There exist constants c and C such that if |t | ≤ cTN , then for j = 0,1,

∣∣∣∣
∂j

∂tj

(
ϕN(t, xN)− e− t2

2 W
(s)
N (t, xN)

)∣∣∣∣ ≤ Ce− t2
8 Υs,N .

Remark 2.1 It may be remarked that Proposition 2.1 can be further extended for any
j = 0,1, . . . , s, but at the expense of added complexity in the proof. Such an exten-
sion of Proposition 2.1 can be used to derive asymptotic expansion of the moments
of the statistic RN(η).

3 Main Results

We use the notation defined in Sect. 2. Theorems 3.1 and 3.2 follow from Theorems 1
and 2 of Mirakhmedov [25] and are presented here for the sake of completeness,
and to connect to Bartlett’s type formula (2.5); also, their application to DS in our
examples of GUM gives weaker conditions for asymptotic normality and improved
Berry–Esseen type bound.

Let I{A} stand for the indicator function of the set A and

L1,N (ε) = 1

N3/2

N∑

m=1

E|ξ̂m|3I
{|ξ̂m| ≤ ε

}
,

L2,N (ε) = 1

N

N∑

m=1

Eξ̂2
mI

{|ξ̂m| > ε
}
,

L2,N (ε) = 1

N

N∑

m=1

Eĝ2
mI

{|ĝm| > ε
}
.

(3.1)

Theorem 3.1 If for arbitrary ε > 0

(i) L2,N (ε) → 0,
(ii) L2,N (ε) → 0,

(iii) MN(π(4BN L1,N (ε))−1) → ∞,
(iv) min(BN,

√
N) = o(MN(π(4BN L1,N (ε))−1)),

then the statistic RN(η) has an asymptotic normal distribution with expectation ΛN +
xNBNγN and variance σ 2

N , given in (2.1).

Remark 3.1 For all the three examples of GUM we consider, conditions (ii), (iii)
and (iv), being conditions on the parameters of the urn model, are automatically sat-
isfied under very general set-up (see Sect. 4), so that all we need is to check the
Lindeberg’s condition (i) for ensuring the asymptotic normality of the DS.

Let E|gm(ξm)|s < ∞, for some s ≥ 3. Define W
(s)
N (u, xN) so that

∫ ∞

−∞
eitu dW

(s)
N (u, xN) = W

(s)
N (t, xN)e− t2

2 . (3.2)
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The function W
(s)
N (u, xN) can be obtained by formally substituting

(−1)v
dν

duν
Φ(u) = −e−u2/2Hv−1(u)/

√
2π, where Φ(u) = 1√

2π

∫ u

−∞
e− t2

2 dt,

for (it)νe−t2/2 for each ν in the expression for W(s)
N (t, xN)e−t2/2 (see Lemma 7.2 of

[4, p. 53]), where Hv(x)is the νth order Hermite–Chebishev polynomial. Note that
W

(3)
N (u, xN) = Φ(u). Set

Δ
(s)
N = sup

−∞<u<∞
∣∣P

{
RN(η) < uσN +ΛN + xNBNγN

} − W
(s)
N (u, xN)

∣∣,

χN(a, b) = I{a < b}
∫

a≤|t |≤b

∣∣∣∣
ϕN(t, xN)

t

∣∣∣∣dt.

Theorem 3.2 Let 0 < δ ≤ 1. Then, there exists a constant C such that Δ
(3)
N ≤

C(β2+δ,N + κ2+δ,N + EN(δ)).

Theorem 3.3 Let E|gm(ξm)|s < ∞, for some s ≥ 3, m = 1,2, . . . ,N . There exist
constants c and C such that Δ(s)

N ≤ CΥs,N + χN(cTN,β−1
s,N ).

Theorem 3.4 Let the statistic RN(η) be a lattice r.v. with span h and a set of possible
values in �. If E|g(ξm)|s < ∞, for some s ≥ 3, m = 1,2, . . . ,N , then there exist
constants c and C such that uniformly in z ∈ �

sup
z∈�

∣∣∣∣
σN

h
P

{
RN(η) = z

} − d

duz
W

(s)
N (uz, xN)

∣∣∣∣ ≤ CΥs,N + χ̄N (cTN,πσN/h),

where uz = (z −ΛN − xNBNγN)/σN and

χ̄N (a, b) = I{a < b}
∫

a≤|t |≤b

∣∣ϕN(t, xN)
∣∣dt.

The following general bounds for χN(a, b) are useful in applications. Write

ψm(t, τ ) = E exp
{
itfm,N(ξm)+ iτ ξm

}
,

dN(a, b) = 1 − sup
aσ−1

N ≤|t |≤bσ−1
N|τ |≤π

N−1
N∑

m=1

∣∣ψm(t, τ )
∣∣2
,

(3.3)

Hm(t, τ ) = E
〈
tf ∗

m,N(ξm)+ τξ∗
m

〉2
,

H̄N(a, b) = inf
aσ−1

N ≤|t |≤bσ−1
N|τ |≤π

1

N

N∑

m=1

Hm

(
t

2π
,
τ

2π

)
,

(3.4)
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where 〈a〉 stands for the distance between real a and integers. Here and in what
follows, for a given r.v. ζ we define ζ ∗ = ζ − ζ ′, where ζ ′ is an independent copy
of ζ . Then

χN(a, b) ≤ CBN ln
(
bσ−1

N

)
exp

{
−1

2
NdN(a, b)

}
, (3.5)

χN(a, b) ≤ CBN ln
(
bσ−1

N

)
exp

{
−1

2
NH̄N(a, b)

}
(3.6)

and

χ̄N (a, b) ≤ CσNBN exp

{
−1

2
NH̄N(a, b)

}
. (3.7)

These inequalities (3.5)–(3.7) follow from the following arguments: From formula
(2.3) it follows that for the ch.f. ϕN(t, xN) in (2.5), one can write the product∏N

m=1 ψm(t, τ )instead of ΨN(t, τ ). Since ΘN(0, xN) ≥ c (cf. (5.7) below), inequal-

ity (3.5) follows by using the fact that x < e(x
2−1)/2. On the other hand, by Lemma 4

of [30], we have

4Hm

(
t

2π
,
τ

2π

)
≤ 1 − ∣∣ψm(t, τ )

∣∣2 ≤ 2π2Hm

(
t

2π
,
τ

2π

)
.

This inequality together with (3.5) implies the inequalities (3.6) and (3.7).

Remark 3.2 A DS of the special form

X2
N =

N∑

m=1

η2
m

arises in many problems in statistics and in discrete probability (see e.g. Sect. 4,
and [31]). This DS is a lattice r.v. with span equal to 2. Also,

Hm(t, τ ) =
∑

k,l

〈vk,l〉2P(ξm = k)P
(
ξ ′
m = l

)
, (3.8)

where vk,l = (k − l)((k + l)t + τ). As in Lemma 2 of [31], one can prove that for all
real t and τ such that |t | ≤ 1/4, |τ | ≤ 1/2 and any non-negative integer k and l,

max
{〈vk,l〉, 〈vk+1,l〉, 〈vk+2,l〉

} ≥ |t |
2
.

From this it follows that if

∞∑

l=0

∞∑

j=0

P {ξm = kj,l}P
{
ξ ′
m = l

} ≥ c > 0, (3.9)

then H̄N(a,πσN/2) ≥ a2/4σ 2
N , where for each l = 0,1,2, . . . , kj,l is defined such

that max{〈v3j,l〉, 〈v3j+1,l〉, 〈v3j+2,l〉} = 〈vkj,l ,l〉, j = 0,1,2, . . . .
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4 Applications

In what follows, we will use the notation of the preceding sections, keeping in mind
that the distribution of the r.v. ξm is what is relevant for the particular GUM under
consideration. Note that in all our examples of the GUM, the distributions of the r.v.’s
ξm depend on an arbitrary parameter υ , which can be chosen in a suitably conve-
nient manner. We will thus choose the parameter υ such that AN = n, in which case
xN = 0, and hence the terms of asymptotic expansion, i.e. the function W

(s)
N (u,0) are

considerably simplified. For example, it is known that (see [4, pp. 52 and 55])

P0,N (t, τ ) = 1,

P1,N (t, τ ) = i3

6N

N∑

m=1

E(tĝm + τ ξ̂m)
3,

P2,N (t, τ ) = i4

24N

N∑

m=1

(
E(tĝm + τ ξ̂m)

4 − 3
(
E(tĝm + τ ξ̂m)

2)2) + 1

2
P 2

1,N (t, τ ).

Therefore, from (2.6), (2.9), and (3.2),

W
(5)
N (u,0) = Φ(u)− e−u2/2

√
2πN

(
u2 − 1

6
α3,0,N − 1

2
α1,2,N

)

− e−u2/2

√
2πN

{
u5 − 10u3 + 15u

72
α2

3,0,N

+ u3 − 3u

24

(
α4,0,N − 3

N

N∑

m=1

α̂2
20m − 3α2

2,1,N − 2α3,0,Nα1,2,N

)

+ u

8

(
3α2

1,2,N + 2α2,1,Nα0,3,N − 2α2,2,N

+ 4

N

N∑

m=1

α̂2
11m + 2

N

N∑

m=1

α̂20mα̂02m

)}
, (4.1)

where α̂ijm = Eĝimξ̂
j
m,αi,j,N = N−1 ∑N

m=1 α̂ijm.
In what follows, we will restrict ourselves to such a 3-term asymptotic expansion

given above, just to keep our calculations simple.

4.1 Example A

The r.v. η = (η1, . . . , ηN) has the multinomial distribution M(n,p1, . . . , pN), pm >

0, m = 1, . . . ,N,p1 +· · ·+pN = 1, and we take L(ξm) = Poi(npm). We assume that
N = N(n) → ∞,max1≤m≤N pm → 0 as n → ∞. We take λ = n/N,λm = npm and
PiN = pi

1 + · · · + pi
N .
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In this classical scheme, since the best conditions for asymptotic normality and
the Berry–Esseen type bound of DS are already given in [26, 28], we concentrate our
attention on the asymptotic expansion results.

Theorem 4.1 Let the statistic RN(η) be a lattice r.v. with span h and a set of possible
values �. If E|g(ξm)|5 < ∞,m = 1,2, . . . ,N and P2N ≤ (10 lnn)−1, then uniformly
in z ∈ �

∣∣∣∣
σN

h
P

{
RN(η) = z

} − d

duz
W

(5)
N (uz,0)

∣∣∣∣

≤ C

(
β5,N + (

P3N + n−2)3/4 + σN
√
n exp

{
−1

2
NH̄N

(
cTN,

πσN

h

)})
,

where uz = (z −ΛN)/σN and TN is defined as in Sect. 3 with

EN(1) =
√
n−1 + P2N

(
1 + min

(
1, λ−1/2)√1 + nP2N

)
.

The particular DS Xk
N := ∑N

m=1 η
k
m for any integer k > 1 is a special case of

Theorem 4.1. We shall focus on the most important application, the chi-square type
statistic X2

N . As stated before, X2
N is the lattice with span equal to 2; also in this case

gm(ξm) = (ξ2
m − λm(λm + 1))− (2nP2N + 1)(ξm − λm). Hence

ΛN = n(1 + nP2N),

σ 2
N = 2n2P2N + 4n3(P3N − P2

2N

) = N
(
2nλP2N + 4n2λ

(
P3N − P2

2N

)) := Nσ̂ 2
N,

α12N = 2λσ̂−1
N P2N, α21N = 4

√
nλσ̂−2

N

(
P2N + 12n

(
P3N − P2

2N

))
,

α30N = nλσ̂−3
N

[
4P2N + 2n

(
16P3N − 9P2

2N

) + 8n2(4P4N − 9P2NP3N + 5P3
2N

)]
,

α40N = σ̂−4
N nλ

[
8P2N + n

(
164P2

2N − 17P3N
)

+ n2(636P4N − 768P2NP3N + 192P3
2N

)

+ n3(448P5N − 1120P2NP4N + 912P2
2NP3N − 240P4

2N

)

+ 48n4(P6N − 4P2NP5N + 6P2
2NP4N − 4P3

2NP3N + P5
2N

)]
,

α22N = (
λσ̂ 2

N

)−1
λ
[
8nP2N + 2n2(19P3N − 14P2

2N

)

+ 12n3(P4N − 2P2NP3N + P3
2N

) − 1
]
,

1

N

N∑

m=1

α̃2
20m = σ̂−4

N nλ
[
3P2N − 2NP3N + 4N2P4N

+ 16N3(P5N − 2P4NP2N + P3NP2N)

+ 16N4(P6N − 4P2NP5N + 6P4NP2
2N − 4P3NP3

2N + P5
2N

)]
,
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4

N

N∑

m=1

α̃2
11m + 2

N

N∑

m=1

α̃20mα̃02m

= (
λσ̂ 2

N

)−1[2n2λP3N + 2n3λ
(
2P4N − 6P3NP2N + 3P3

2N

)]
.

Corollary 4.1 Let c1 ≤ Npm ≤ c2 for some positive c1, c2 and all m = 1, . . . ,N ;
then uniformly in b ∈ {n+ 2k, k = 0,1, . . . , n(n− 1)/2}, the set of possible values of
the r.v. X2

N , one has
∣∣∣∣
σN

2
P

{
X2

N = b
} − d

dub
W

(5)
N (ub,0)

∣∣∣∣

≤ C

(
1

N3/2
+ 1

(nλ)3/2
+ nλ exp

{
− cN

λmax(1, λ)

})
,

where ub = (b − ΛN)/σN , and the exact formulae for ΛN,σ 2
N and the terms of

W
(5)
N (ub,0) are given above.

Corollary 4.2 follows from Corollary 4.1 by using the Euler–Maclaurin summation
formula.

We state just a 2-term asymptotic expansion to keep the expressions simple.

Corollary 4.2 Let c1 ≤ Npm ≤ c2 for some positive c1, c2 and all m = 1, . . . ,N .
Then
∣∣∣∣P

{
X2

N < uσN +ΛN

} −Φ(u)− e−u2/2

√
2πN

[
1 − u2

6
α30N + λP2N

σ̂N

+ 2

σ̂N
S1

(
1

2
(uσN +ΛN)

)]∣∣∣∣ ≤ C

(
1

N
+ 1

nλ
+ nλ exp

{
− cN

λmax(1, λ)

})
, (4.2)

where S1(x) = x − [x] + 1/2 is a well-known periodic function of period one (see
for instance [4, p. 254]), and comes up here due to the Euler–Maclaurin summation
formula.

We may remark here that Corollary 4.2 is already a considerable improvement
over Theorem 5 of [14], which states inequality (4.2) with exp{−Nλle−2λ}, l > 0,
instead of the exponential term, and makes sense under the additional restriction
λ = O(lnN).

Remark 4.1 Application of Theorems 3.3 and 3.4 to the log-likelihood statistic
LN = ∑N

m=1 ηm lnηm, and to the count-statistics μr = ∑N
m=1 I{ηm = r}, gives re-

sults similar to Theorems 4 and 6, respectively, of [24], but our results can be used to
obtain additional terms in the expansions they provide.

A DS with kernel functions fm,N = fN for all m = 1,2, . . . ,N is called a “sym-
metric DS”; for example, the X2

N , μr and LN are all symmetric DS. It is well-known
(see e.g. [8, 23, 34]) that the chi-square test is asymptotically most powerful (AMP)
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within the class of symmetric tests, i.e. among tests based on symmetric DS, for test-
ing the hypothesis of uniformity against the sequence of alternatives H1n given by

pm = 1

N

(
1 + ϑm

(nλ)1/4

)
, m = 1,2, . . . ,N;

N∑

m=1

ϑm = 0 and 0 <C1 ≤ 1

N

N∑

m=1

ϑ2
m ≤ C2 < ∞.

Moreover, the chi-square test is the unique AMP test for λ bounded away from zero
and infinity; on the other hand, if λ → 0 or λ → ∞ then there exist other AMP sym-
metric tests, for example, the empty cells test when λ → 0, and the log-likelihood
test when λ → ∞. In view of this, Ivchenko and Mirakhmedov [14] introduced and
studied the “second order asymptotic efficiency” (SOAE) of symmetric tests wrt the
chi-square test. Investigation of the SOAE is based on the asymptotic expansion of
the power function of such tests. In the case λ → 0 they have shown that SOAE
may arise only if n = O(N3/4); for example, the empty-cells test based on the statis-
tic μ0 is SOAE for this situation; for the case λ → ∞ they could only note that
when λ = O(lnN), the SOAE test does not exist, because of the restrictive choice of
λ = O(lnN) needed in their asymptotic expansions. Therefore, they point out that the
SOAE problem is open when λ → ∞. Corollary 4.2 does resolve this problem show-
ing that the chi-square test is still optimal in the sense of SOAE if n = o(N3/2); it is
also SOAE wrt the log-likelihood test for n ≥ N3/2 (cf. [24], for further discussion).

4.2 Example B

Now we consider the sample scheme without replacement from a stratified popula-
tion of size ΩN ; the strata are indexed by m = 1, . . . ,N ; ωm is the size of the mth
stratum, with ΩN = ω1 + · · · + ωN ; and ηm is the number of elements of the mth
stratum appearing in a sample of size n. In this scheme, L(ξm) = Bi(ωm,υ), where
υ ∈ (0,1) is arbitrary. We choose υ = p =: n/ΩN , q = 1 − p, so that xN = 0. Set
ω̄N = max1≤m≤N ωm,Ω2,N = ω2

1 + · · · + ω2
N . We consider the case where the strata

sizes ωm may increase together with N but satisfy the following condition

ω̄N = o
(
(nq)1/4). (4.3)

Theorem 4.2 If the Lindeberg’s condition (3.1) is satisfied along with condi-
tion (4.3), then as nq → ∞, RN(η) has the asymptotic normal distribution with
expectation ΛN and variance σ 2

N as given in (2.1).

Theorem 4.3 For arbitrary δ ∈ (0,1] there exists a constant C such that

Δ
(3)
N ≤ C

(
β2+δ,N +

(
ω̄N

nq

)δ/2

+ ω̄2
N√
nq

)
.

Remark 4.2 The term ω̄2
N/

√
nq can be replaced by ω̄N max(1−6pq+3nqΩ2,NΩ−2

N )

/
√
nq . If ω̄N ≤ (nq)(1−δ)/(4−δ) then the second term on the rhs dominates the third

one.
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Theorem 4.4 Let E|gm(ξm)|5 < ∞; then there exist constants c and C such that

Δ
(5)
N ≤ C

(
β5,N +

(
ω̄N

nq

) 3
2 + χN

(
cTN,β−1

5,N

))
.

Let now the elements of mth stratum be independent r.v.s Xm,1, . . . ,Xm,ωm ,
m = 1, . . . ,N . We draw a sample of size n without replacement from the entire
population. Define the indicator r.v.s ηmi which are equal to one if an element
Xmi of the mth stratum appears in the sample, or else it equals to zero, so that
ηm1 + · · · + ηmωm = ηm. Then S

(m)
n,N = ∑ωm

i=1 Xmiηmi represents the sum of elements
of the mth stratum which appear in the sample, and the sum of all the elements in the
sample, the “sample-sum,” given by Sn,N = ∑N

m=1 S
(m)
n,N , is a DS.

Assume that the r.v.s Xm,1, . . . ,Xm,ωm have a common distribution, the same as
that of an r.v. Ym, m = 1, . . . ,N . We also assume that Y1, . . . , YN are independent
r.v.s. Then the r.v. Sn,N is distributionally equal to a DS with fmN(0) = 0, fmN(j) =
Xm,1 + · · · +Xm,j , m = 1, . . . ,N :

L(Sn,N ) = L
(

N∑

m=1

(
ηm∑

j=1

Xm,j I{ηm ≥ 1}
))

. (4.4)

Suppose E|Ym|s < ∞ for some s ≥ 3. Then the expressions in (2.1) have the follow-
ing form:

fmN(ξm) =
ξm∑

j=1

Xm,j I{ξm ≥ 1}, (4.5)

gm(ξm) =
ξm∑

j=1

I{ξm ≥ 1}(Xm,j − γN)−ωmp(EYm − γN), m = 1, . . . ,N.

γN = 1

ΩN

N∑

m=1

ωmEYm, (4.6)

σ 2
N = p

N∑

m=1

ωm

(
E(YmN − γN)2 − p

(
E(YmN − γN)

)2)
.

From Theorems 4.3 and 4.4, we immediately have the following corollary.

Corollary 4.3 If (4.3) is satisfied, then for arbitrary δ ∈ (0,1] there exists a constant
C such that

sup
−∞≤u≤∞

∣∣P {Sn,N < uσN + nγN } −Φ(u)
∣∣ ≤ C

(
β2+δ,N + 1

(nq)δ/2

)
,
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where

β2+δ,N = σ
−(2+δ)
N

N∑

m=1

E
∣∣gm(ξm)

∣∣2+δ

≤ 22+δp(1 + p1+δ)

σ 2+δ
N

N∑

m=1

ω2+δ
m E|Ym,N − γN |2+δ. (4.7)

Corollary 4.4 If (4.3) is satisfied, then there exist positive constants c and C such
that

Δ
(5)
N ≤ C

(
β5,N +

(
ω̄N

nq

) 3
2 + χN

(
cT̃N ,β−1

5,N

))
,

where T̃N = min(β−1
3N ,

√
nq/ω̄2), and the terms of the W

(5)
N (u,0) in (4.1) have the

following forms:

α1,2,N = 0, α2,1,N =
√

q

n

∑N
m=1 ωm(α2,m − 2pα2

1,m)∑N
m=1 ωm(α2,m − pα2

1,m)
,

α0,3,N = 1 − 2q√
nq

,

α2,2,N =
∑N

m=1 ωm(α2,m(1 + (ωm − 2)p)− α2
1,m(ωm − 2)p(1 − 3q))

ΩNp
∑N

m=1 ωm(α2,m − pα2
1,m)

,

N∑

m=1

α2
11m = q

∑N
m=1 ω

2
mα

2
1,m

ΩN

∑N
m=1 ωm(α2,m − pα2

1,m)
,

N∑

m=1

α20mα02m =
∑N

m=1 ω
2
m(α2,m − pα2

1,m)

ΩN

∑N
m=1 ωm(α2,m − pα2

1,m)
,

α3,0,N =
N∑

m=1

ωm

(
α3,m − 3pα1,mα2,m − 2p2α3

1,m

)

×
(
p2/3

N∑

m=1

ωm

(
α2,m − pα2

1,m

)
)−3/2

,

α4,0,N =
N∑

m=1

ωm

(
α4,m − 4pα1,mα3,m

+ 3(ωm − 1)pα2
2,m − 6(ωm − 2)p2α2

1,mα2,m

− 3(3ωm − 2)p3α4
1,m

)
(

√
p

N∑

m=1

ωm

(
α2,m − pα2

1,m

)
)−2

,
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where αi,m = E(Ym − γN)i ; also

χN

(
cT̃N ,β−1

5,N

) ≤ C
√
n ln

(
σ−1
N β−1

5,N

)

× exp

{
−n

(
1 − sup

(cσN T̃N )−1≤|t |≤(σNβ5,N )−1

1

N

N∑

m=1

∣∣EeitYm
∣∣
)}

,

(4.8)
and

χN

(
cT̃N ,β−1

5,N

)

≤ C
√
n ln

(
σ−1
N β−1

5,N

)

× exp

{
−2nq

(
1 − sup

(cσN T̃N )−1≤|t |≤(σNβ5,N )−1

1

ΩN

∣∣∣∣
N∑

m=1

ωmEeitYm

∣∣∣∣∣

)}
. (4.9)

When we take ω1 = · · · = ωN = 1, our Corollary 4.3 improves a result of [22],
and a recent result of [38] for the case when (nq)−1/2 ≤ Δ1 (in their notation). Note
that

β3N = p

σ 3
N

N∑

m=1

E|Ym − pEYm − qγN |3 + qp3

σ 3
N

N∑

m=1

∣∣E(Ym − γN)
∣∣3
,

which provides a natural expression, showing the exact dependence of the bound on
p = n/N , and moments of the elements of population, instead of the formula for Δ∗

2

in [38]. This fact is confirmed by the second term in W
(5)
N (u,0) (see (4.1)), and that

α1,2,N = 0. Also, in this case the 3-term asymptotic expansion, i.e. W
(5)
N (u,0), coin-

cides with that given by Mirakhmedov [21]; further, from our Corollary 4.4 follows
the main result of [5, 36], and it extends Theorem 1 of [11] giving an additional term
in their asymptotic expansion for the case when p is bounded away from one; this
case is the most interesting in a sample scheme without replacement.

4.3 Example C

For this case we assume that L(ξm) = NB(dm,p), with p = n/(n + D1N), m =
1, . . . ,N , where DjN = d

j

1 +· · ·+d
j
N ; then xN = 0. Putting ρ = p/(1−p) = n/D1N

we get B2
N = D1Nρ(1+ρ), κ4N = (1+3ρ(1+ρ)(2+D2ND−1

1N))(D1Nρ(1+ρ))−1.

Theorem 4.5 Let D2ND−2
1N = o(N−1/2). If the Lindeberg’s condition (3.1) is satis-

fied, then the DS RN(η) has an asymptotic normal distribution with mean ΛN and
variance σ 2

N as given in (2.1).

Theorem 4.6 There exists a constant C such that Δ(3)
N ≤ C(β3N +EN), where

EN = 1√
n(1 + ρ)

+
√

3

D1N

(
2 + D2N

D1N

)(
1 +

√
3N

D1N

(
2 + D2N

D1N

))
.
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Remark 4.3 Using the fact that D2
1N ≤ ND2N we have

EN ≤ 1√
n(1 + ρ)

+
√

3√
N

√

1 + 2N

D1N

(
1 +

√

1 + 2N

D1N

)
.

Theorems 4.5 and 4.6 do improve as well as correct Theorems 13 and 14 of [26].

Theorem 4.7 Let the statistic RN(η)be a lattice r.v. with span h and a set of possible
values �. If E|g(ξm)|5 < ∞, m = 1,2, . . . ,N , then uniformly in z ∈ �

∣∣∣∣
σN

h
P

{
RN(η) = z

} − d

duz
W

(5)
N (uz,0)

∣∣∣∣

≤ C

(
β5,N +

(
D3N

D3
1N

+ D2N

D2
1Nn(1 + ρ)

)3/4

+ σN
√
D1Nρ(1 + ρ) exp

{
−1

2
NH̄N

(
cTN,

πσN

h

)})
,

where uz = (z −ΛN)/σN and TN are defined as in Sect. 3 with EN(1) = EN .

Now consider the following practical and important two-sample problem: Let
X1, . . . ,XM−1 and Y1, . . . , Yn be two samples from continuous distributions F and
G, respectively, defined on the same A ⊂ R. The classical two-sample problem is to
test the null hypothesis of homogeneity H0 : F = G. Define the r.v.s

ηm,k =
n∑

i=1

I
{
Yi ∈ [X(m·k),X(m·k−k)]

}
,

where m = 1, . . . ,N , N = �M/k� is the largest integer that does not exceed
M/k, integer k ≥ 1,X(1), . . . ,X(M−1) are the order-statistics of the first sample
X1, . . . ,XM−1. The r.v. (η1,k, . . . , ηN,k) are called the “spacing-frequencies,” i.e. fre-
quencies of the second sample falling in-between the spacings created by the first
sample. A wide class of test statistics for testing H0 can be expressed in the form (see
[10] and [7])

VN =
N∑

m=1

fm,N(ηm,k)

where the fm,N are real valued functions. It is easy to check that under H0 the
r.v. (η1,k, . . . , ηN,k) satisfies (1.1) with L(ξm) = NB(k,p), p = n/(n + M), i.e. the
statistic VN is DS defined in the Pólya–Egenberger urn model. Hence, Theorems 4.5
and 4.6 immediately lead to the following Corollaries 4.5 and 4.6, by putting dm = k,
m = 1, . . . ,N and ρ = n/M .

Corollary 4.5 If the Lindeberg’s condition (3.1) is satisfied then the statistic VN has
asymptotic normal distribution with expectation ΛN and variance σ 2

N .
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Corollary 4.6 There exists a constant C > 0 such that

Δ
(3)
N ≤ C

(
β3N + 1√

n(1 + ρ)
+ 1√

N

)
.

Consider now the so-called Dixon statistic defined by DN = ∑N
m=1 η

2
m,k . For this

statistic we obtain:

ΛN = M
(
1 + (1 + k)ρ

)
, γN = 1 + 2(1 + k)ρ,

σ 2
N = 2M(1 + 2k)ρ2(1 + ρ)2,

gm(ξm) = (ξm − kρ)2 − kρ(1 + ρ)− (1 + 2ρ)(ξm − kρ),

α12N =
√

2(k + 1)√
k(1 + 2k)

,

α30N

= 8k2ρ3(1 + ρ)3 + k(1 + ρ)2(19 + 76ρ(1 + ρ))+ 2(1 + ρ)2(15 − 13ρ + 16ρ2(1 + ρ))

2
√

2k(1 + 2k)3/2ρ3(1 + ρ)3
.

Although the exact formula for β4,N = α40N is manageable, it is quite long and there-
fore we restrict ourselves to its leading term as k → ∞, and obtain the following
bounds:

β4N ≤ CN−1 max
(
1,

(
kρ(1 + ρ)

)−4)
, (σNβ3N)−1 ≥ c

(
kρ(1 + ρ)

)−1/2
.

The Dixon statistic satisfies the conditions of Theorem 4.7. In particular by evaluating
the moments of the r.v. gm(ξm) = (ξm − kρ)2 − kρ(1 + ρ)− (1 + 2ρ)(ξm − kρ) and
using Corollaries 4.5, 4.6 and Theorem 4.7 along with Remark 3.2, we obtain the
following result (we omit the details).

Corollary 4.7

(i) If
√
Nk2ρ2(1 + ρ)2 → ∞, then the Dixon statistic has an asymptotic normal

distribution with mean M(1 + (1 + k)ρ) and variance 2M(1 + 2k)ρ2(1 + ρ)2.
(ii) P

{
DN < u

√
2M(1 + 2k)ρ(1 + ρ)+M(1 + (1 + k)ρ)

}

= Φ(u)+O

(
1√
N

+ 1√
Nk2ρ2(1 + ρ)2

)
.

(iii) Let k → ∞ and k = o(M1/3); then we have, for any b = 0,1, . . . , n(n− 1)/2,

M(1 + 2k)ρ2(1 + ρ)2P {DN = n+ 2b}

= e−u2
b/2

√
2π

(
1 + u2

b − 3ub

6
√
N

α30N + (k + 1)u√
2Nk(1 + 2k)

)
+O

(
N−1),

where ub = (n+ 2b −M(1 + (1 + k)ρ))/
√

2M(1 + 2k)ρ(1 + ρ).



J Theor Probab

Consider the class of symmetric tests (i.e. based on symmetric DS) for testing the
hypothesis of homogeneity against some of “smooth” sequence of alternatives which
approaches the null at the rate O((nk)−1/4). The asymptotic power of symmetric
tests increases as k grows; the Dixon statistic is an example of a symmetric DS; it
is known to be unique AMP within the class of symmetric tests for any fixed k, the
step of spacings; see [35]. The above stated Corollaries 4.4–4.6 allow us to consider
the situation when k → ∞; in this case the AMP test is not unique. Comparison of
the AMP tests based on their second-order asymptotic efficiencies using the asymp-
totic expansion of the power function can be done. For this purpose, the asymptotic
expansion results presented here are central and such comparisons will be the subject
of another investigation.

Acknowledgements We would like to express our gratitude to the referee for a careful reading of the
manuscript and for comments that helped improving the paper.

Appendix: Proofs

Proof of Proposition 2.1 We need the following three lemmas to complete the proof
of this proposition.

Lemma A.1 Set  s,N = min(β−1/s
s,N , κ

−1/s
s,N ). There exist constants c > 0 and C > 0

such that if max(|t |, |τ |) ≤ c s,N then for k = 0 and 1,

∣∣∣∣∣
∂k

∂tk

(
ΨN(t, τ )− e− t2+τ2

2

(
1 +

s−3∑

v=1

N−v/2Pv(t, τ )

))∣∣∣∣∣

≤ C(βs,N + κs,N )
(
1 + |t |s + |τ |s)e− t2+τ2

4 .

Lemma A.1 follows from Theorem 9.11 of [4] because of (2.2) and the fact that
the sum of the r.v.s (ĝm, ξ̂m) has unit correlation matrix. �

Lemma A.2 For any integer l satisfying 0 ≤ l ≤ 3v, where v = 0,1, . . . , s − 2, there
exists a constant c(l, v) > 0 such that

∣∣∣∣
∂l

∂t l
Gv,N (t, xN)

∣∣∣∣ ≤ c(l, v)
(
1 + (|t | + |xN |)3v−l)

(βv+2,N + κv+2,N ).

Proof Similarly to that of Lemma 9.5 of [4, p. 71], the only difference being that in
(9.12) of [4, p. 72], we use the inequality ρji+2/ρ

(ji+2)/2
2 ≤ (ρr+2/ρ

(r+2)/2
2 )ji/r , in

their notation, to obtain
∣∣∣∣
∂l

∂t l
Pv,N (t, τ )

∣∣∣∣ ≤ c(l, v)
(
1 + (|t | + |τ |)3v−l)

(βv+2,N + κv+2,N )

≤ c(l, v)
(
1 + (|t | + |τ |)3v−l)(

β
v/(s−2)
s,N + κ

v/(s−2)
s,N

)
. (5.1)
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Lemma A.2 follows from this and (2.6). �

Lemma A.3 Let max(β3N,κ3N) ≤ 0.01. If |t | ≤ 0.3β−1
3N and |τ | ≤ 0.3κ−1

3N , then for
k = 0 and 1,

∣∣∣∣
∂k

∂tk
ΨN(t, τ )

∣∣∣∣ ≤ exp

{
− t2 + τ 2

10

}
.

Lemma A.3 follows from Lemma A, Part (2) of [27].
Put TN(s) = min(β−1/s

s,N , κ
−1/s
s,N , E −1

N (1)), where s ≥ 3. Note that TN(s) ≤ TN ,

since β
−1/s
s,N ≤ β−1

3,N . Let |t | ≤ c1TN(s), where c1 > 0 is to be chosen sufficiently
small. From (2.4) and (2.6),

∇N(t) =:
∣∣∣∣∣
∂k

∂tk

(
ΘN(t, xN)− e− t2+x2

N
2

(
1 +

s−3∑

v=1

N−v/2Gv,N(t, xN)

))∣∣∣∣∣

≤
∫

|τ |≤c1 s,N

∣∣∣∣∣
∂k

∂tk

(
ΨN(t, τ )− e− t2+τ2

2

s−3∑

v=1

N−v/2Pv,N(t, τ )

)∣∣∣∣∣dτ

+
∫

c1 s,N≤|τ |

∣∣∣∣∣
∂k

∂tk

(
e− t2+τ2

2

s−3∑

v=1

N−v/2Pv,N(t, τ )

)∣∣∣∣∣dτ

+
∫

c1 s,N≤|τ |≤0.3κ−1
3,N

∣∣∣∣
∂k

∂tk
ΨN(t, τ )

∣∣∣∣dτ

+
∫

0.3κ−1
3,N≤|τ |≤πBN

∣∣∣∣
∂k

∂tk
ΨN(t, τ )

∣∣∣∣dτ = �1 + �2 + �3 + �4. (5.2)

Applying Lemma A.1, (5.1), and Lemma A.3 to �1,�2 and �3, respectively, after
some algebraic manipulations we obtain

�l ≤ C(βs,N + κs,N )
(
1 + |t |s)e− t2

6 , l = 1,2,3. (5.3)

Set ψ̂m(t, τ ) = E exp{it ĝm(ξm) + iτ ξ̂m} and recall that ΨN(t, τ ) = ∏N
m=1 ψ̂m(t, τ ).

We have

∣∣ψ̂m(t, τ )
∣∣2 = ∣∣ψ̂m(0, τ )

∣∣2 +E
[(
eitĝ

∗
m − 1

)(
eit ξ̂

∗
m − 1

)] +E
(
eitĝ

∗
m − 1

)

≤ ∣∣ψ̂m(0, τ )
∣∣2 + |t ||τ |E∣∣ĝ∗

mξ̂
∗
m

∣∣ + t2Eĝ∗2

m

and

∣∣ψ̂m(t, τ )
∣∣2 = ∣∣ψ̂m(0, τ )

∣∣2 +Eeitξ̂
∗
m
(
eitĝ

∗
m − 1

) ≤ ∣∣ψ̂m(0, τ )
∣∣2 + 2|t |E|ĝm|.
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Using these inequalities, and the fact that x < exp{(x2 − 1)/2}, and

∣∣∣∣∣
∂

∂t

N∏

m=1

ψ̂m(t, τ )

∣∣∣∣∣ ≤
N∑

m=1

∣∣∣∣
∂

∂t
ψ̂m(t, τ )

∣∣∣∣
∏

l �=m

∣∣ψ̂l(t, τ )
∣∣,

N∑

m=1

∣∣∣∣
∂

∂t
ψ̂m(t, τ )

∣∣∣∣ ≤ |t | + 2|τ |,

we find for k = 0, 1 that

∣∣∣∣∣
∂k

∂tk

N∏

m=1

ψ̂m(t, τ )

∣∣∣∣∣ ≤ √
e
(|t | + |τ |)k exp

{
min

(|t ||τ | + 2t2,2|t |β1,N
)

− 1

2

N∑

m=1

(
1 − ∣∣ψ̂m(0, τ )

∣∣2)
}
. (5.4)

Choosing c1 to be sufficiently small, using (5.4) and that β1,N ≤ √
N , we get for

|t | ≤ c1TN(s),

�4 ≤ CBk+1
N exp

{
−1

4
MN

(
0.3(BNκ3,N )−1) + min

(
BN |t | + 2t2,2|t |√N

)}

≤ CBk+1
N exp

{
−1

8
MN

(
0.3(BNκ3,N )−1) − t2

8

}
. (5.5)

From (5.2), (5.3), and (5.4) it follows that

∣∣∣∣∣
∂k

∂tk

(
ΘN(t, xN)− e− t2+x2

N
2

(
1 +

s−3∑

v=1

N−v/2Gv,N(t, xN)

))∣∣∣∣∣ ≤ Ce− t2
8 Υs,N . (5.6)

In particular (5.6) implies

∣∣∣∣∣ΘN(0, xN)− e− x2
N
2

s−3∑

v=0

N−v/2Gv,N(0, xN)

∣∣∣∣∣ ≤ CΥs,N . (5.7)

Put

G(s)
N (t, xN) = e− t2+x2

N
2

s−3∑

v=0

N−v/2Gv,N(t, xN).

Then, from (2.5), (5.6) and (5.7) we have
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∂k

∂tk

(
ϕN(t, xN)−W

(s)
N (t, xN)

)

= ∂k

∂tk

( G(s)
N (t, xN)

G(s)
N (0, xN)

−W
(s)
N (t, xN)

)

+ θ2Υs,N

G(s)
N (0, xN)+ θ2Υs,N

(
θ1t

ke− t2
8 + 1

G(s)
N (0, xN)

∂k

∂tk
G(s)
N (t, xN)

)
, (5.8)

where, as usual, |θi | ≤ 1. Note that the polynomials Qj,N(x) in (2.7) are actually

the result of the expansion of (exp{x2
N/2}G(s)

N (0, xN))−1 noting that G0,N (x) = 1;

also, it is clear that G(s)
N (0, xN) ≥ c for some c > 0. Using these facts and (2.7), (2.8),

Lemma A.2 in (5.8) after some algebra, we complete the proof of Proposition 2.1 for
|t | ≤ c1TN(s).

Let now c1TN(s) ≤ |t | ≤ c1TN . Then, using Lemma A.2 it is easy to see that

∇N(t) ≤
∣∣∣∣
∂k

∂tk

(
ΘN(t, xN)− e− t2+x2

N
2

)∣∣∣∣ +Ce− t2
8 Υs,N .

Apply the outlined above technique for the first term in the rhs of this inequality
using (2.4), Lemma A.1 with s = 3, Lemma A.3 and the fact that |t | ≥ c1TN(s), to
complete the proof of Proposition 2.1; the details are omitted.

Proof of Theorem 3.1 In addition to the notations of Sect. 3, define

L1,N (ε) = 1

N3/2

N∑

m=1

E|ĝm|3I
{|ĝm| ≤ ε

}
.

Since |xN | ≤ c0, Theorem 1 of [26] gives: for arbitrary ε > 0 there exists a constant
C > 0 such that

Δ
(3)
N ≤ C

(
L1,N (ε)+L2,N (ε)+ L1,N (ε)+ L2,N (ε)+B2

N L1,N (ε)

× exp

{
−1

8
MN

(
π

(
4BN L1,N (ε)

)−1)
}

+ max(
√
MN(π(4BN L1,N (ε))−1),min(BN,

√
N))

MN(π(4BN L1,N (ε))−1)

)
.

Since L1,N (ε) ≤ ε, L1,N (ε) ≤ ε and ε > 0 is arbitrarily small, Theorem 3.1 fol-
lows. �
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Proof of Theorem 3.2 Putting XmN = fm,N(ξm) and YmN = ξm in Theorem 2 of [25],
it can be shown that

Δ
(3)
N ≤ C

(
β2+δ,N + κ2+δ,N +B2

Nκ
1/δ
2+δ,N

× exp

{
−1

8
MN

(
π

(
4BNκ

1/δ
2+δ,N

)−1)
}

+ EN(δ)

)
,

since PN(u) = P(g1(ξ1)+ · · · + gN(ξN) < uσN |ζN = n). If MN(π(4BNκ
1/δ
2+δ)

−1) ≤
cBN for some c > 0 then Theorem 3.2 is true with C = c. If MN(π(4BNκ

1/δ
2+δ,N )−1) >

cBN then B2
Nκ

1/δ
2+δ,N exp{−MN(π(4BNκ

1/δ
2+δ,N )−1)/8} ≤ c1κ

1/δ
2+δ,N ≤ c1κ2+δ,N , since

δ ∈ (0,1], and Theorem 3.2 follows. �

Proof of Theorem 3.3 By the well-known Esseen’s smoothing inequality we have

Δ
(s)
N ≤ 1

π

∫

|t |≤β−1
s,N

∣∣∣∣
ϕN(t, xN)− e− t2

2 W
(s)
N (t, xN)

t

∣∣∣∣dt + 24√
2π

βs,N

≤ 1

π

∫

|t |≤cTN

∣∣∣∣
ϕN(t, xN)− e− t2

2 W
(s)
N (t, xN)

t

∣∣∣∣dt

+
∫

cTN≤|t |≤β−1
s,N

∣∣∣∣
e− t2

2 W
(s)
N (t, xN)

t

∣∣∣∣dt

+
∫

cTN≤|t |≤β−1
s,N

∣∣∣∣
ϕN(t, xN)

t

∣∣∣∣dt + 24√
2π

βs,N .

Also,

∣∣ϕN(t, xN)− e− t2
2 W

(s)
N (t, xN)

∣∣ ≤ |t | max|u|≤|t |

∣∣∣∣
∂

∂u

(
ϕN(u, xN)− e− u2

2 W
(s)
N (u, xN)

)∣∣∣∣.

On the other hand, from the definition of W(s)
N (t, xN), Lemma A.2, and the inequality

β3,N ≤ β
1/(s−2)
s,N , we observe that

∫

cTN≤|t |≤β−1
s,N

∣∣∣∣
e− t2

2 W
(s)
N (t, xN)

t

∣∣∣∣dt ≤ Ce−c3T
2
N ≤ cΥs,N .

Therefore

Δ
(s)
N ≤ 1

π

[∫

1≤|t |≤cTN

∣∣ϕN(t, xN)− e− t2
2 W

(s)
N (t, xN)

∣∣dt

+ max
|t |≤1

∣∣∣∣
∂

∂t

(
ϕN(t, xN)− e− t2

2 W
(s)
N (t, xN)

)∣∣∣∣

]
+ cΥs,N + χN

(
cTN,β−1

s,N

)
.
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Applying Proposition 2.1 here completes the proof of Theorem 3.3. �

Proof of Theorem 3.4 The proof follows by standard methods outlined, as for in-
stance in [32, pp. 204–207], which uses the inversion formula and Propositions 2.1
the details are omitted. �

Proof of Theorem 4.1 To find the central moments of order k of the Poi(λ) r.v. which
is a polynomial in λ of order �k/2�, for even j , κj,N ≤ c(P(j−2)/2 N +n−(j−2)/2); for

odd j , one can use the well-known inequality κl,N ≤ κ
(l−2)/(s−2)
s,N , 3 ≤ l ≤ s. Simi-

larly, from inequality (53) of [26] we have MN(0.3(BNκ3N)−1) ≥ 0.2n(1+nP2N)−1.
Theorem 4.1 follows from these facts and the inequality (3.7). �

Proof of Corollary 4.1 To obtain the set of equalities given before Corollary 4.1,
write gm(ξm) = (ξm −λm)

2 + 2λm(ξm −λm)−λm + (2nP2N + 1)(ξm −λm); next, to
find higher order central moments of Poi(λ) r.v. ξ , we use the following recurrence
formula of [16]:

E(ξ − λ)v+1 = vλE(ξ − λ)v−1 + λ
d

dλ
E(ξ − λ)v.

Considering an r.v. which equals pl−1
m with the probability pm, m = 1, . . . ,N ,

and using well-known inequalities between moments, one can check Pl
lN ≤ Pl−1

l+1,N ,

l = 2,3, . . .; with equality iff pm = N−1, m = 1, . . . ,N . Write pm = N−1(1 + εm),
with εm = Npm − 1, and put Σ2

N = N−1(ε2
1 + · · · + ε2

N). It is easy to observe that
σ 2
N = 2nλ(1 + c(1 + λ)Σ2

N), also α40N ≤ cn2(1 + λ4Σ2
N)/σ 4

N . Considering sepa-
rately the cases when λ → 0, λ → ∞, and λ is bounded away from zero and infinity,
one can show that β4N = N−1α40N ≤ c((nλ)−1 + N−1), (β4Nσ 2

N)−1 ≥ c(1 + λ2)−1

and TN ≥ c(
√
λmax(1,

√
λ))−1; the details are omitted; here c > 0 is a constant and

it is different in different places. It is evident that the condition (3.9) is fulfilled.
Corollary 4.1 follows from Theorem 4.1 and Remark 3.2. �

Proof of Theorems 4.2–4.4 We recall that in this case ξm is Bi(ωm,p) r.v. with
p = n/ΩN . To find the central moments of the r.v. ξm we use the following formula:
for integer k ≥ 2,

E(ξm −ωmp)
k = pq

(
d

dp
E(ξm −ωmp)

k−1 + (k − 1)ωmE(ξm −ωmp)
k−2

)
. (5.9)

We have: B2
N = nq ,

κ2+δ,N ≤ κδ/2
4,N

≤
(

1 − 6pq

nq
+ 3

Ω2,N

Ω2
N

)δ/2

≤
(

1 − 6pq + 3ω̄Npq

nq

)δ/2

≤
(

7ω̄N

4nq

)δ/2

,
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κ5,N ≤ κ
3/4
6,N < 3

√
3

(
ω̄

n
q

)3/2

, BNκ3,N ≤ √
1 − 6pq + 3ω̄Npq ≤ √

7ω̄N .

Now using the inequalities

∣∣E exp{iτ ξm}∣∣2 ≤ exp
{−4ωmpq sin2 τ/2

}
,

sin2 τ

2
≥ τ 2

π2
, |τ | ≤ π, 1 − e−u ≥ 1 − e−c

c
u, 0 ≤ u ≤ c,

(5.10)

we get

MN

(
π

(
4BNκ

1/δ
2+δ,N

)−1) ≥ (1 − e−1)nq

4ω̄N (1 − 6pq + 3nqΩ2,NΩ−2
N )

≥ (1 − e−1)nq

4ω̄2
N

,

since Ω2,N = ω2
1 + · · · + ω2

N . Finally L1,N (ε) ≤ ε−1κ3,N ≤ ε−1√ω̄N/nq . Theo-
rems 4.2–4.4 follow from Theorems 3.1–3.3, respectively, and the relations given
above. �

Proof of Corollaries 4.3 and 4.4 Use inequality (a1 + · · · + an)
s ≤ ns−1(as1 +

· · ·+asn), am ≥ 0, s ≥ 1, to get (4.7). Applying (5.9) we obtain the formulas for αijN .
Recall that ψm(t, τ ) = E exp{itfmN(ξm) + iτ ξm} and the fact that ξm is a sum of
ωmindependent Bi(1,p) r.v.s. From (4.5) we have

∣∣ψm(t, τ )
∣∣ =

∣∣∣∣∣

ωm∑

k=0

P(ξm = k)eiτkEeitfmN (k)

∣∣∣∣∣ ≤
ωm∑

k=0

P(ξm = k)
∣∣EeitYm

∣∣k

≤ P(ξm = 0)+ ∣∣EeitYm
∣∣
ωm∑

k=1

P(ξm = k) = P(ξm = 0)

+ ∣∣EeitYm
∣∣(1 − P(ξm = 0)

)
.

Hence

dN ≥ 1

N

N∑

m=1

(
1 − (1 − p)ωm

)(
1 − sup

(σNTN )−1≤|t |≤σNβ−1
s,N

∣∣EeitYm
∣∣
)

≥ p

(
1 − sup

(σNTN )−1≤|t |≤σNβ−1
s,N

1

N

N∑

m=1

∣∣EeitYm
∣∣
)
,

since P(ξm = 0) = (1 − p)ωm . Inequality (4.8) follows from this and (3.5). On the
other hand

ψm(t, τ ) = Ee(iτ+lnEeitYm )ξm = (
Eeiτς

(
EeitYm

)ς )ωm = (
1 +p

(
Eei(τ+tYm) − 1

))ωm,
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with L(ς) = Bi(1,p). Hence

N∏

m=1

∣∣ψm(t, τ )
∣∣2 =

N∏

m=1

∣∣1 + p
(
Eei(τ+tYm) − 1

)∣∣2ωm

≤ exp

{
−2pq

N∑

m=1

ωm

(
1 −E cos(τ + tYm)

)
}

≤ exp

{
−2ΩNpq

(
1 − 1

ΩN

∣∣∣∣∣

N∑

m=1

ωmEeiτ+itYm

∣∣∣∣∣

)}
.

Inequality (4.9) follows. �

Proof of Theorems 4.5 and 4.6 Recall in this case that L(ξm) = NB(dm,p), with
p = n/(n +D1N), m = 1, . . . ,N , where DjN = d

j

1 + · · · + d
j
N , and ρ = p/(1 − p).

We use that Eeiτξm = (1 −p)dm(1 −peiτ )−dm to find the moments of the r.v. ξm and
that B2

N = D1Nρ(1 + ρ),

B2
Nκ4N = 1 + 3ρ2(1 + ρ)2(2 +D2ND−1

1N

)
,

∣∣Eeiτξm
∣∣2 =

(
1 + 4ρ(1 + ρ) sin2 τ

2

)−dm

.

Therefore, using the inequalities (5.10) we get

MN

(
0.3(BNκ3N)−1) ≥ 3(1 − e−1/3)D1Nρ(1 + ρ)

(1 + 3ρ(1 + ρ)(2 +D2ND−1
1N))

= 3
(
1 − e−1/3)κ−1

4N ,

since dmρ(1 +ρ)(1 + 3ρ(1 +ρ)(2 +D2ND−1
1N))−1 < 1/3. Therefore, Theorems 4.5,

4.6 and 4.7 follow from Theorems 3.1, 3.2 and 3.4, respectively, and the inequality
(3.7) by putting δ = 1, and some simple algebra. �
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